# PEDIATRIC FRACTURES AND DISLOCATIONS

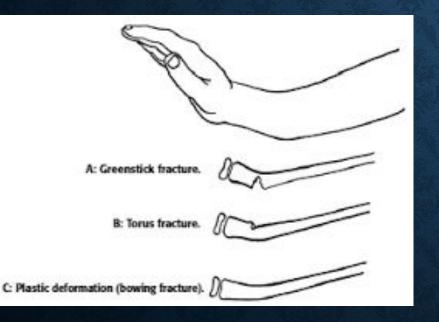
Heather Hansen MD

Pediatric Orthopedic Surgery

Magic City Sports Medicine Conference

5/20/23

### INTRODUCTION


### **PEDIATRIC FRACTURES**

- Incidence of pediatric fractures is increasing with time
  - Increased sports participation
- From ages 0-16
  - 42% of boys will sustain at least one fracture
  - $\circ$  27% of girls
- Peak incidence for fracture
  - Age 16 for boys
  - Age 12 for girls

### **PEDIATRIC FRACTURES**

- Immature bone differs from adult bone
- Children's bone:
  - less mineralized
  - more porous
  - more vascular channels compared to adults
  - This results in a more elastic bone
  - Able to absorb more energy before failure

# PEDIATRIC FRACTURES

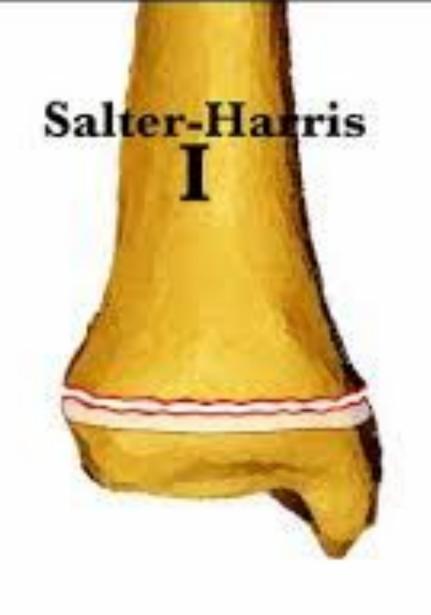


- Plastic Deformation
  - Microscopic mechanical failure of bone
  - Radiographs reveal angulation without an obvious fracture line
- Greenstick fracture
  - Occurs with greater force than plastic deformation
  - Results in failure (fracture) on one side of the bone but plastic deformation on the other
- Torus (buckle) fracture
  - Occur in the metaphyseal of bones which is composed of cancellous (soft) bone and thin cortical (hard) bone
  - The thin cortical bone fails in compression buckling outwards
  - The periosteum remains intact

WHAT ABOUT THE GROWTH PLATE (PHYSIS)?



#### **PHYSEAL CONSIDERATIONS**


- Open physes leads to greater remodeling potential
  - Occurs more rapidly in plane of joint motion
  - Greater closer to the physis
- Most active physes:
  - Proximal humerus
  - Distal radius
  - Distal femur
  - Proximal tibia

### **PHYSEAL CONSIDERATIONS**

Physeal Fractures

- The growth plate is weaker than bone and ligaments
- Forces that produce sprains in adults often result in fractures in children

#### SALTER HARRIS CLASSIFICATION



www.cOl

# SALTER HARRIS CLASSIFICATION

#### Growth Plate (Physeal) Fractures

- AKA Salter-Harris Fractures
- 5 types
  - Type I
    - Fracture traverses entire
       growth plate
    - Diagnosis is difficult as radiographs are usually normal
    - Patient is point tender over the physis with localized swelling

# SALTER HARRIS CLASSIFICATION



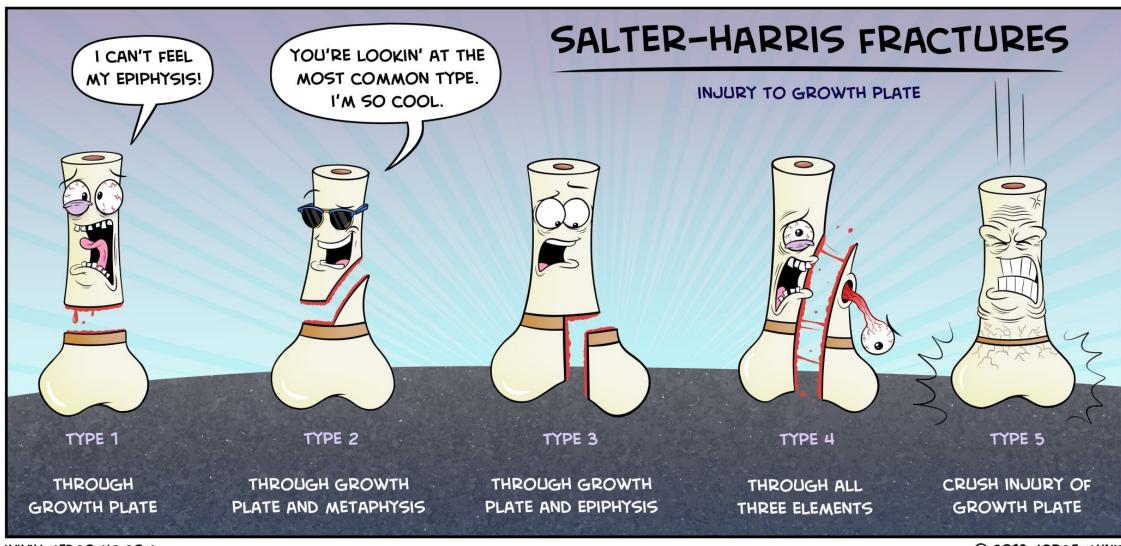
- Growth Plate (Physeal) Fractures
  - AKA Salter-Harris Fractures
  - 5 types
    - Type II
      - Most common
      - Fracture line passes through a portion of the growth plate and exits through a segment of the METAPHYSIS



# SALTER HARRIS CLASSIFICATION

- Growth Plate (Physeal) Fractures
  - AKA Salter-Harris Fractures
  - 5 types
    - Type III
      - Fracture line passes through the physis and exits into the epiphysis
      - Intra-articular fracture

# SALTER HARRIS CLASSIFICATION




- Growth Plate (Physeal) Fractures
  - AKA Salter-Harris Fractures
  - 5 types
    - Type IV
      - Fracture line crosses all zones
        - Metaphysis, physis, and epiphysis
      - Intra-articular fracture

# SALTER HARRIS CLASSIFICATION

- Growth Plate (Physeal) Fracture
  - AKA Salter-Harris Fractures
  - 5 types
    - Type V
      - Crush injury to the physi
      - Rare





© 2016 JORGE MUNIZ

WWW.MEDCOMIC.COM

# UPPER EXTREMITY FRACTURES



# CLAVICLE FRACTURES

- Common fracture
  - 15% pediatric upper extremity injuries



- Shaft fractures vast majority (>80%)
- Symptoms
  - Pain to shoulder region
- Physical exam
  - Deformity
  - Tenting of skin, assess if skin is at risk (impending open fracture)
- Imaging
  - 2 views of affected clavicle +/-
  - AP of both clavicles

# **CLAVICLE FRACTURES**

#### Treatment

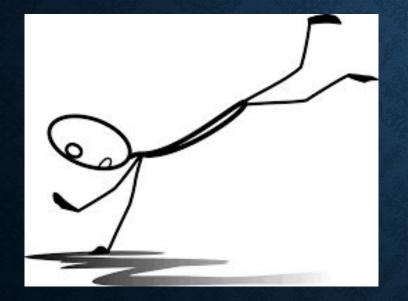
- Majority treated nonoperatively in a sling
- Operative indications
  - CONTROVERSIAL
  - Adolescent fractures with significant shortening (>2cm)
  - Absolute Indications
    - Open fractures
    - Displaced fracture with soft-tissue at risk from tenting
    - Subclavian artery or vein injury





# PROXIMAL HUMERUS FRACTURES

- 80% of humeral growth occurs at the proximal humeral physis
- Great remodeling potential
  Salter-Harris 2 most common
  Most common in adolescents


#### Figure 3



• Treatment

### PROXIMAL HUMERUS FRACTURES

- Immobilization
  - Acceptable alignment for non-operative management
  - <10 years old = any degree of angulation</li>
  - 10-12 years old = up to 60-75° of angulation
  - >12 years old = up to  $45^{\circ}$  of angulation or 2/3 displacement



Most common fracture in children under 16 ~ ¼ of all pediatric fractures Typically results from a fall on an outstretched hand Fracture patterns vary based on patient age

- Clinical Evaluation
  - Pain
  - Swelling
  - Deformity
  - Reduced wrist range of motion
  - Refusal to use limb





Radiographic evaluation
2 views of the wrist



Buckle fractures

 Common in younger children (0-8)

 Treated in a cast / brace for 4 weeks

> • Universally do well

#### Growth plate fractures

- More common in older children (8-14)
  - May need closed reduction +/percutaneous pinning for displaced fractures followed by cast immobilization x 6 weeks
  - The greater the degree the displacement the greater the risk of growth arrest

# SCAPHOID FRACTURES

- Most common carpal bone fracture
- · Fall on outstretched hand
- · Patients complain of wrist pain
- Swelling but rarely ecchymosis or deformity
- Pain with wrist ROM



# SCAPHOID FRACTURES

- Anatomic snuffbox tenderness dorsally
- Scaphoid tubercle tenderness volarly
- Scaphoid compression test
  - Pain
     reproduced
     with axial load
     applied through
     the thumb
     metacarpal



Snuff box

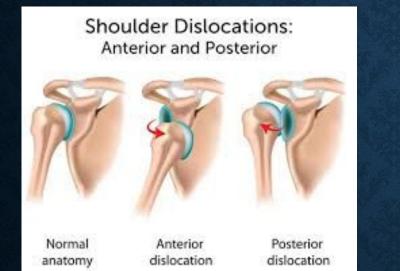
Scaphoid tubercle

Scaphoid compression test

### SCAPHOID FRACTURES

#### • Diagnosis

- 4 views of affected wrist
- Radiographs can be negative initially (about  $\frac{1}{4}$  of the time)
- Repeat radiographs in 7-14 days
- **MRI**
- **C**T


# **SCAPHOID FRACTURES**

- Treatment
  - Thumb spica cast
    - · Nondisplaced fracture
  - Surgery
    - · Displaced fracture
- Fracture
- · Some athletes with nondisplaced fracture
  - · Decreased time to union, faster return to sport

### SCAPHOID FRACTURES

- Complications
  - Nonunion
    - **5**-10%
  - Avascular necrosis
    - **13-50**%
    - Worse with more proximal fractures
  - Malunion
  - Arthritis

UPPER EXTREMITY DISLOCATIONS



# SHOULDER DISLOCATION

- 10% of all shoulder dislocations occur from age 10-20
- Vast majority are anterior dislocations (> 90%)
  - Typically occurs with the shoulder in abduction and external rotation
- Posterior dislocations are more rare
  - Seizures or electric shock common causes

#### SHOULDER DISLOCATION



#### Symptoms

• Pain

- Deformity to the shoulder
  - Anterior Dislocation
    - Upper extremity held in slight abduction and elbow flexed
    - Squaring of the shoulder
  - Posterior Dislocation
    - Less deformity Upper extremity held in adduction and internal rotation

#### SHOULDER DISLOCATION

# Radiographic Evaluation AP, axillary lateral, +/- scapular Y







Normal glenohumeral joint.

An anterior shoulder dislocation.

#### SHOULDER DISLOCATION

#### • Treatment

- Urgent closed reduction
- Sling immobilization

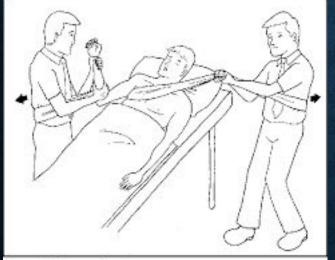



Figure 2. Strap method.

Traction – Counter Traction



Stimson Technique



Posterior Dislocation – In Line Traction and Lifting of Humeral Head

#### **ELBOW (ULNOHUMERAL) DISLOCATION**



- 3-6% of all elbow injuries
- Peak age 13-14
- High incidence of associated fractures
   Medial epicondyle, coronoid, radial head and neck
- Most commonly occurs after a fall on an outstretched hand or elbow

### ELBOW (ULNOHUMERAL) DISLOCATION

#### Symptoms of Elbow Dislocation

- Bruising is present
- Swelling is present
- Severe pain.
- Deformity of the elbow joint
- Warmth may be present
- Inability to move the elbow

For More Information, Visit: www.epainassist.com



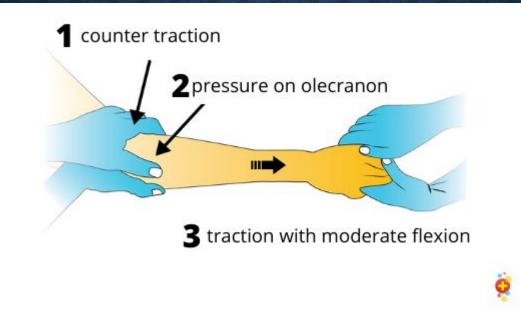
Radiographic
Evaluation
2 views of the elbow

### ELBOW (ULNOHUMERAL) DISLOCATION

### **ELBOW (ULNOHUMERAL) DISLOCATION**

#### •Treatment

Urgent reduction and splinting
Typically splint for about a week
Meticulous analysis of post reduction to ensure concentric reduction with no incarcerated fragments

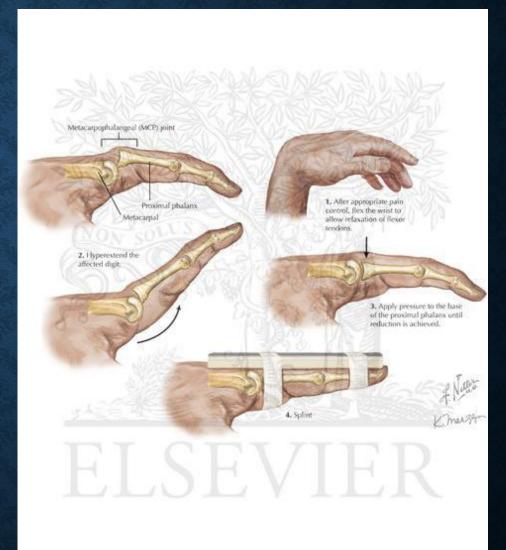



Medial epicondyle

### **ELBOW (ULNOHUMERAL) DISLOCATION**

#### Reduction

- inline traction to improve coronal displacement
- forearm supination to shift the coronoid under the trochlea
- elbow flexion while placing direct pressure on tip of olecranon



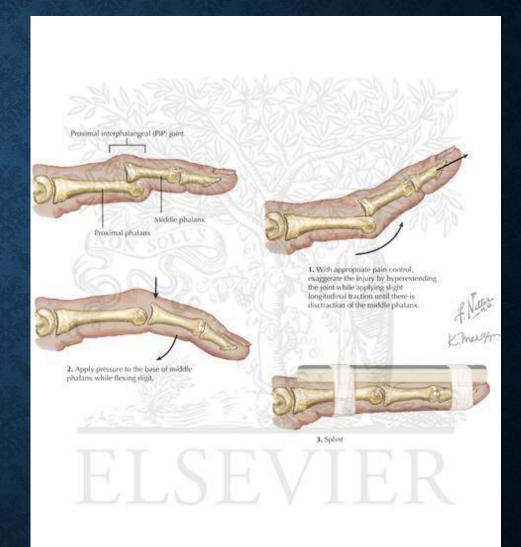

## METACARPOPHALANGEAL DISLOCATION

- Usually dorsal
- Index finger most common, followed by thumb
- Fall onto hand
- Diagnose clinically and with radiographs
- Treatment
  - Closed reduction
  - Open reduction for complex dislocations
    - Bayonet positioning of proximal phalanx with skin dimpling in proximal palmar crease

#### METACARPOPHAL ANGEAL DISLOCATION • Closed reduction

- Direct pressure over dorsal/volar aspect of proximal phalanx
  - Dorsal pressure for dorsal dislocation / volar pressure for volar dislocation
- Wrist in flexion
- Avoid simple longitudinal traction as it may pull the volar plate into the joint making reduction irreducible




• Splint

## PHALANX DISLOCATIONS

- Can involve the PIP or DIP joint
- Dorsal dislocations more common than volar
- Usually from a direct blow
- Pain and deformity of digit
- Diagnose clinically and with radiographs
- Treatment
  - Closed reduction
  - Open reduction for failed closed reduction

# PHALANX DISLOCATIONS

- Exaggerate the injury
- Longitudinal traction
- Direct pressure on distal aspect
- Splint



# LOWER EXTREMITY FRACTURES

## FEMUR FRACTURES

- . 1.6% of all pediatric fractures
- Bimodal distribution of incidence
  - Peak between age 2-4
  - Peak during mid-adolescence
- . Higher incidence during summer
- Non-ambulators 80% secondary to non-accidental trauma
- . Mechanism varies

# FEMUR FRACTU

F

- Symptoms
  - Inability to ambulate
  - Extreme pain
  - Swelling
  - Deformity

## FEMUR FRACTURES

#### **Radiographic Evaluation** •

#### 2 views of entire femur



Fig. 2. A female patient 6-year-old with fracture left femur AO classification 32A3.

## FEMUR FRACTURE

- . Treatment
  - Based on age
    - 6 months
      - Pavlik harness



#### 6 months- 4 years old

• Spica cast

- > 4 ~ 10
   Flexible intramedullary nails
   > 10
  - Plate and screws vs rigid nail







DISTAL FEMORAL PHYSEAL FRACTURES

 Common from direct trauma

- Valgus force or hyperextension
- Can present similar to collateral ligament injury
- Salter Harris 2 most common, followed by Salter Harris 3 and 4



# DISTAL FEMORAL PHYSEAL FRACTURES

- Growth arrest is common
  - · 36% of SH 1 fractures
  - 58% in SH 2 fractures
  - 49% in SH 3 fractures
  - · 64% in SH 4 fractures

### **DISTAL FEMORAL PHYSEAL FRACTURES**

- Treatment
  - Long leg cast nondisplaced fractures
    - CLOSE FOLLOW UP

• Operative most of the time

#### **TIBIAL EMINENCE FRACTURE**

- Tibial spine fracture
- Intra-articular fracture at the bony attachment of the ACL on the tibia
- Age 8-14
- Same mechanism as ACL tear

- Associated injuries
  - Meniscal injury
  - Collateral ligament injury
  - Capsular damage
  - Osteochondral fracture



### **TIBIAL EMINENCE FRACTURE**

- Presents like ACL tear
- Swelling
- Pain
- Difficulty with weightbearing
- Positive Lachman's and anterior drawer sign
- Diagnose with x-ray, CT, MRI



#### **TIBIAL EMINENCE FRACTURE**

#### • Treatment

- Nonoperative
  - Nondisplaced fracture
  - Cast or brace in extension
- Operative
  - Displaced fractures
  - Open reduction or arthroscopic reduction
  - Screw or suture fixation



#### **TIBIAL TUBERCLE FRACTURE**

- Common in adolescent boys near the end of skeletal growth
  - Age 12-15
- Occur during athletic activity
  - Basketball, football, sprinting, high jump
- Concentric contraction of the quads muscle during jumping



### **TIBIAL TUBERCLE FRACTURE**

#### • Symptoms

- Sudden onset of pain
- Inability to ambulate
- Swelling to anterior knee
- Extensor lag or deficiency
- Compartment syndrome



### **TIBIAL TUBERCLE FRACTURE**

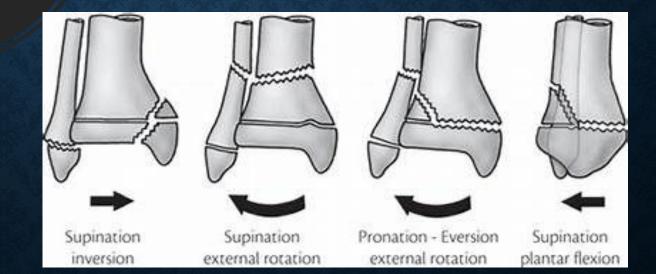
#### • Radiographs

• AP and lateral



- Treatment
  - Long leg cast x 6 weeks
    - Minimally displaced fractures

#### Open reduction internal fixation




- 10-40% of all injuries in skeletally immature athletes
- Male : Female 2:1
- Age 8-15
- Risk Factors
  - Sports participation

Twisting injury or direct blow

Obesity

### ANKLE FRACTURES '



- Clinical Evaluation
  - Pain to ankle
  - Inability to ambulate
  - Swelling
  - Ecchymosis
  - Tenderness to ankle
  - Deformity



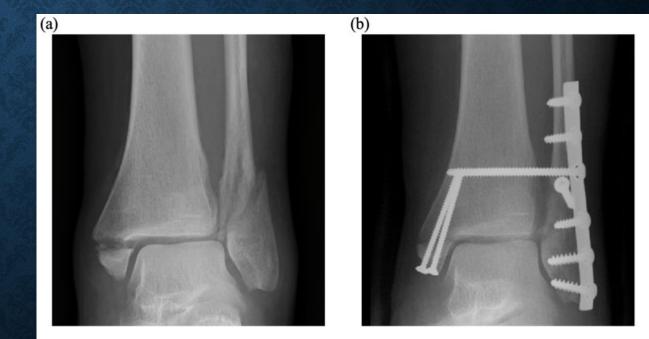
#### . Radiographic Evaluation

3 views of ankle





#### Salter Harris I Distal Fibula


- Common in growing athletes
- Pain over lateral ankle
- Swelling over lateral ankle
- Tender over distal fibula physis
- Xrays normal aside from lateral swelling
- Treated with cast or walking boot x 4 weeks
- Excellent outcomes
  - Growth arrest very rare

- Physeal Fractures
  - Account for 25-40% of all growth plate fractures
  - Any degree of displacement requires operative treatment





- Nonoperative management Boot or cast
  - Nondisplaced medial or lateral malleolus fracture
  - Avulsion fractures
- Operative management
  - Displaced fractures



LOWER EXTREMITY DISLOCATIONS

## PATELLAR DISLOCATION

- Common in athletes
  - More common in women
- Non-contact injuries
- Risk factors:
  - Female gender
  - Femoral Anteversion
  - Patella Alta
  - Trochlear Dysplasia
  - Increased Q angle
  - Lateralized tibial tubercle (Increased TT-TG distance)

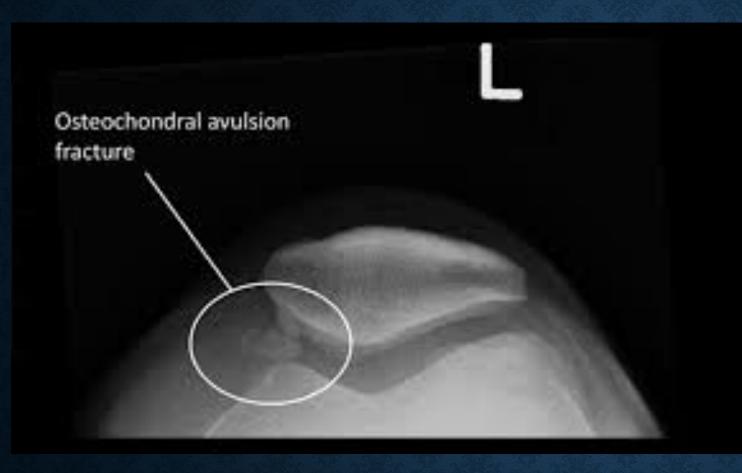
- Genu Valgum
- External tibial torsion
- Prior patellar dislocation
- Ligamentous laxity
- Collagen disorders (i.e. Ehlers-Danlos)
- Vastus medialis obliqus (VMO) and core weakness

# PATELLAR DISLOCATION

Clinical Evaluation

Often reduce
 spontaneously

. Hemarthrosis


Inability to flex knee

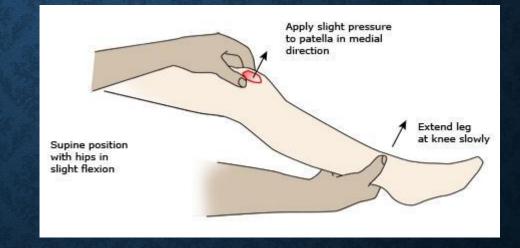
. Deformity

## **PATELLAR DISLOCATION**



Radiographic Evaluation
3 views of the knee
AP/ lat / Sunrise




# PATELLAR DISLOCATION

#### • Treatment

- Gentle reduction and immobilization
  - · Knee immobilizer
- Surgery
  - · Recurrent cases
  - Osteochondral fracture / loose body

## **PATELLAR DISLOCATION**

- Push patella medially
- Extend the leg





## SUMMARY

#### SUMMARY

- Children can sustain a variety of unique fractures
  Nondisplaced fractures are typically treated non-operatively
- •Displaced fractures often require surgical intervention
- Dislocations should be reduced urgently

# **THANKS!** Questions?